Preizkusite novo različico: COBISS+
 Lokalna baza podatkov: FMF in IMFM, Matematična knjižnica, Ljubljana (Štev. zapisov: 63.581) | Domača stran knjižnice

Izbrani zapis trajna povezava

AvtorBátkai, András
Kramar Fijavž, Marjeta
Rhandi, Abdelaziz
Naslov Positive operator semigroups : from finite to infinite dimensions / András Bátkai, Marjeta Kramar Fijavž, Abdelaziz Rhandi
Drugi nasloviPozitivne operatorske polgupe : od končnih do neskončnih razsežnosti.
Vrsta/vsebinatype of material znanstvena monografija
Jezikangleški
Leto2017
Založništvo in izdelava[Basel] : Birkhäuser, cop. 2017
Fizični opisXVII, 364 str. : graf. prikazi ; 25 cm
ZbirkaOperator theory : advances and applications, ISSN 0255-0156 ; vol. 257
OpombeBibliografija: str. 347-355
Kazalo
ISBNISBN 978-3-319-42811-6
Predmetne oznake (nekontrolirane)operatorske polgrupe / pozitivnost / Peron-Frobeniusova teorija / evolucijske enačbe / asimptotsko obnašanje / operator semigroups / positivity / Perron-Frobenius theory / evolution equations / asymptotic behavior
UDK517.983
Druge klasifikacije
47D06
47B65
15B48 (MSC 2010)
Doi/ISAN10.1007/978-3-319-42813-0
URLhttp://dx.doi.org/10.1007/978-3-319-42813-0
PovzetekKnjiga je enostaven in sodoben uvod v teorijo operatorskih polgrup (ali linearnih dinamičnih sistemov), s katero lahko uspešno opišemo dinamiko zapletenih pojavov v različnih primerih iz uporabe. Pozitivnost je pogosto naravna predpostavka v fizikalnih, kemijskih, bioloških ali ekonomskih procesih. S to predpostavko dobimo lepo in bogato matematično strukturo dinamičnih sistemov in operatorjev, ki te procese opisujejo. V prvem delu je predstavljena končno-razsežna teorija z brez-koordinatnim pristopom, ki ga je sicer v literaturi težko najti. Tako so prikazane osnovne ideje Perron-Frobeniusove teorije na enak način kot kasneje v neskončnih razsežnostih. Obravnavani so nekateri osnovni primeri uporabe za matrike v teoriji grafov, populacijskih in ekonomskih modelih. Neskončno razsežna teorija pozitivnih operatorskih polgrup skupaj s spektralno in asimptotsko teorijo je razvita v drugem delu knjige. Na koncu teorijo ponazorijo zahtevnejši primeri kot npr. populacijske enačba, teorija transporta nevronov, diferencialne enačbe z zakasnitvijo in pretoki v omrežjih. Vsako poglavje je opremljeno z nalogami. Bralcu sta v pomoč bogat seznam sodobne bibliografije in natančno stvarno kazalo. Knjiga je v prvi vrsti namenjena podiplomskim študentom, pri čemer je prvi del primeren tudi za napredne študente prve stopnje s solidnim znanjem osnovne analize in linearne algebre.
This book gives a gentle but up-to-date introduction into the theory of operator semigroups (or linear dynamical systems), which can be used with great success to describe the dynamics of complicated phenomena arising in many applications. Positivity is a property which naturally appears in physical, chemical, biological or economic processes. It adds a beautiful and far reaching mathematical structure to the dynamical systems and operators describing these processes. In the first part, the finite dimensional theory in a coordinate-free way is developed, which is difficult to find in literature. This is a good opportunity to present the main ideas of the Perron-Frobenius theory in a way which can be used in the infinite dimensional situation. Applications to graph matrices, age structured population models and economic models are discussed. The infinite dimensional theory of positive operator semigroups with their spectral and asymptotic theory is developed in the second part. Recent applications illustrate the theory, like population equations, neutron transport theory, delay equations or flows in networks. Each chapter is accompanied by a large set of exercises, many of them with solutions. An up-to-date bibliography and a detailed subject index help the interested reader. The book is intended primarily for graduate and master students. The finite dimensional part, however, can be followed by an advanced bachelor with a solid knowledge of linear algebra and calculus
COBISS.SI-ID17812569
V zbirki TI=Operator theory : advances and applications ISSN: 0255-0156

info Dostopna je elektronska verzija dokumenta ali pa gre za elektronski vir

Statusi v izposoji

Podatki o izvodu (signatura - lokacija, inventarna št. ...) Status izvoda Rezervacija
Knjižnica 8177/257 1 001availability  prosto - na dom, čas izposoje: 1 mes.
Knjižnica 8177/257 002availability  prosto - na dom, čas izposoje: 1 mes.